Fault Diagnosis and Prediction of Continuous Industrial Processes Based on Hidden Markov Model-Bayesian Network Hybrid Model

Author:

Yasenjiang Jiarula1ORCID,Xu Chenxing1ORCID,Zhang Shengpeng2ORCID,Zhang Xin2ORCID

Affiliation:

1. Department of Industrial Engineering, Institute of Mechanical Engineering, Xinjiang University, Urumqi 830017, China

2. China National Petroleum Corporation Western Drilling and Engineering Research Institute, Urumqi 830002, China

Abstract

Hidden Markov models (HMMs) have been recently used for fault detection and prediction in continuous industrial processes; however, the expected maximum (EM) algorithm in the HMM has local optimality problems and cannot accurately find the fault root cause variables in complex industrial processes with high-dimensional data and strong variable coupling. To alleviate this problem, a hidden Markov model-Bayesian network (HMM-BN) hybrid model is proposed to alleviate the local optimum problem in the EM algorithm and diagnose the fault root cause variable. Firstly, the model introduces expert empirical knowledge for constructing BN to accurately diagnose the fault root cause variable. Then, the EM algorithm is improved by sequential and parallel learning to alleviate the initial sensitivity and local optimum problems. Finally, the log-likelihood estimates (LL) calculated by the improved hidden Markov model provide empirical evidence for the BN and give fault detection, prediction, and root cause variable detection results based on information about the similar increasing and decreasing patterns of LL for the training data and the online data. Combining the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process, the feasibility and effectiveness of the model are verified. The results show that the model can not only find the fault in time but also find the cause of the fault accurately.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3