PCAF Accelerates Vascular Senescence via the Hippo Signaling Pathway

Author:

Kong Chaohua1ORCID,Wang Dongchen1,Wang Feng1,Lv Yifei1,Zhou Wenying1,Ye Peng1,Gu Yue1,Jiang Xiaomin1,Zhu Linlin1ORCID,Ge Zhen1ORCID,Chao Yuelin1ORCID,Chen Shaoliang1ORCID

Affiliation:

1. Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China

Abstract

P300/CBP-Associated Factor (PCAF), one of the histone acetyltransferases (HATs), is known to be involved in cell growth and/or differentiation. PCAF is reported to be involved in atherosclerotic plaques and neointimal formation. However, its role in cellular senescence remains undefined. We investigated the potential mechanism for PCAF-mediated cellular senescence. Immunohistochemical (IHC) analysis showed PCAF was distinctly increased in the endothelia of aorta in aged mice. Palmitate acid (PA) or X radiation significantly induced the expression of senescence-associated markers and PCAF in human umbilical vein endothelial cells (HUVECs). PCAF silence in PA-treated HUVECs significantly rescued senescence-associated phenotypes, while PCAF overexpression accelerated it. Additionally, our results showed that Yes1 Associated Transcriptional Regulator (YAP) that acts as end effector of the Hippo signaling pathway is crucial in PCAF-mediated endothelial senescence. YAP activity declining was observed in aged vascular endothelia. Overexpression of YAP partially ameliorated PCAF-induced endothelial senescence. In vivo, endothelial-(EC-) specific PCAF downregulation in aged mice using adeno-associated virus revealed less vascular senescence-associated phenotypes. These results suggested that PCAF mediated endothelial senescence through the Hippo signaling pathway, implying that PCAF may become a potential target for the prevention and treatment of vascular aging.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3