RBM24 Mediates Lymph Node Metastasis and Epithelial-Mesenchymal Transition in Human Hypopharyngeal Squamous Cell Carcinoma by Regulating Twist1

Author:

Liu Yuhong1,Pan Min1,Lu Tao1,Li Yanshi1,Yu Dan1,Wang Zhihai1,Hu Guohua1ORCID

Affiliation:

1. Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Abstract

Objective. Despite the target RNA regulatory action of RBM24 (RNA Binding Motif 24), a protein implicated in multiple carcinomas, its role in HSCC remains unclear. Our study probed to understand the effect of RBM24 on HSCC. Materials and Methods. A combination of qRT-PCR, IHC, and western blot was employed to assess the HSCC tissue level of RBM24. The colony formation and CCK-8 assays were performed to estimate cellular proliferative potential, whereas the transwell assay was conducted to examine invasive and metastatic potential. The FaDu cell motility was assessed via the scratch-wound assay and EMT (epithelial-mesenchymal transition) by adopting qRT-PCR in conjunction with western blot and IF (immunofluorescence). The in-vivo effect of RBM24 on HSCC was investigated through modeling metastasis to the popliteal LNs (lymph nodes). Results. Among HSCC patients showing metastasis to LNs, prominent RBM24 downregulation was noted, with an intrinsic association between low RBM24 level and poor outcome. Knocking down RBM24 promoted cell multiplication, migration, and infiltration, while overexpression led to the opposite effects and inhibited the EMT. RBM24’s suppressive action against the FaDu cell mobility and invasion was reversed by Twist1 overexpression. RBM24’s suppressive actions against the tumor evolution and LN metastasis in HSCC in-vivo were also validated. Conclusion. As a carcinoma inhibitor gene, RBM24 regulates Twist1 to achieve LN metastasis and EMT suppression in HSCC.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3