Prediction of Phishing Susceptibility Based on a Combination of Static and Dynamic Features

Author:

Yang Rundong1ORCID,Zheng Kangfeng1ORCID,Wu Bin1,Wu Chunhua1ORCID,Wang Xiujuan2ORCID

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Computer Science, Beijing University of Technology, Beijing 100124, China

Abstract

Phishing is a very serious security problem that poses a huge threat to the average user. Research on phishing prevention is attracting increasing attention. The root cause of the threat of phishing is that phishing can still succeed even when anti-phishing tools are utilized, which is due to the inability of users to correctly identify phishing attacks. Current research on phishing focuses on examining the static characteristics of the phishing behavior phenomenon, which cannot truly predict a user’s susceptibility to phishing. In this paper, a user phishing susceptibility prediction model (DSM) that is based on a combination of dynamic and static features is proposed. The model investigates how the user’s static feature factors (experience, demographics, and knowledge) and dynamic feature factors (design changes and eye tracking) affect susceptibility. A hybrid Long Short-Term Memory (LSTM) and LightGBM prediction model is designed to predict user susceptibility. Finally, we evaluate the prediction performance of the DSM by conducting a questionnaire survey of 1150 volunteers and an eye-tracking experiment on 50 volunteers. According to the experimental results, the correct prediction rate of the DSM is higher than that for individual feature prediction, which reached 92.34%. These research experiments demonstrate the effectiveness of the DSM in predicting users’ susceptibility to phishing using a combination of static and dynamic features.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference40 articles.

1. Four phishing attack trends to look out for in 2019;M. Landewe,2019

2. The state of phishing attacks

3. Massive ransomware attack unleashes 23 Million emails in 24 hours;L. Mathews,2017

4. Spam and phishing in 2018;M. Vergelis;Secure List,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3