Zinc Oxide Nanoparticle Inhibits Tumorigenesis of Renal Cell Carcinoma by Modulating Lipid Metabolism Targeting miR-454-3p to Repressing Metabolism Enzyme ACSL4

Author:

Zhou Xudong1ORCID,Cao Tingting2

Affiliation:

1. The Second Department of Urology, Cangzhou Central Hospital, Cangzhou, China

2. Department of Medical Technology of Cangzhou Medical College, Cangzhou, China

Abstract

Background. Renal cell carcinoma (RCC) affects the life quality of patients with advanced diseases despite good prognosis and exhibits abnormal lipid metabolism. Zinc oxide nanoparticles (ZONs) are metal oxide nanoparticles that are regarded as promising therapeutic candidate for multiple diseases. This study was for exploring the function of ZONs in RCC. Methods. We established in vitro cell model and in vivo xenograft model to determine the antitumor effect of ZONs. Cell viability and proliferation were evaluated via the cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2’-deoxyuridine (EDU) assay. Protein and RNA levels were checked by using immunohistochemistry (IHC) and qRT-PCR assay. ROS, malondialdehyde (MDA), triglyceride, and total cholesterol were quantified to assess lipid oxidation and synthesis. Oil red O staining was performed to check lipid droplets accumulation. The ACSL4 and miR-454-3p expression in tumor samples and normal tissues were evaluated. The luciferase reporter gene assay was performed for checking the interaction between miR-454-3p and ACSL4 3’UTR region. Results. ZONs suppressed the proliferation and viability of RCC cells both in vitro and in vivo. ZONs suppressed accumulation of ROS, MDA, triglyceride, total cholesterol, and lipid droplets in RCC cells, along with upregulated miR-454-3p. miR-454-3p targeted the 3’UTR region to suppress its expression. In patient samples, ACSL4 expression was notably elevated and indicated poor prognosis of RCC patients. Conclusion. ZONs treatment notably impeded proliferation, lipid accumulation, and oxidation in RCC cells, through upregulating miR-454-3p to suppression the function of ACSL4. Our data suggested that ZONs are promising and effective agent for RCC treatment.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3