Affiliation:
1. Mechanical Engineering Department, Umm Al-Qura University, Makkah, Saudi Arabia
Abstract
Friction stir welding (FSW) is the most popular and efficient method of solid-state joining for similar as well as dissimilar metals and alloys. It is mostly used in applications for aerospace, rail, automotive, and marine industries. Many researchers are currently working with different perspectives on this FSW process for various combinations of materials. The general input process parameters are the thickness of the plate, axial load, rotational speed, welding speed, and tilt angle. The output parameters are joint hardness, % of elongation, and impact and yield strengths. Genetic programming (GP) is a relatively new method of evolutionary computing with the principal advantage of this approach being to evaluate efficacious predictive mathematical models or equations without any prior assumption regarding the possible form of the functional relationship. This paper both defines and illustrates how GP can be applied to the FSW process to derive precise relationships between the output and input parameters in order to obtain a generalized prediction model. A GP model will assist engineers in quantifying the performance of FSW, and the results from this study can then be utilized to estimate future requirements based on the historical data to provide a robust solution. The obtained results from the GP models showed good agreement with experimental and target data at an average prediction error of 0.72%.
Subject
Computer Science Applications,General Engineering,Modelling and Simulation
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献