Affiliation:
1. School of Astronomy and Space Science, Nanjing University, Nanjing 210046, China
2. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract
In the dynamical model of relative motion with circular reference orbit, the equilibrium points are distributed on the circle where the leader spacecraft is located. In this work, analytical solutions of periodic configurations around an arbitrary equilibrium point are constructed by taking Lindstedt-Poincaré (L-P) and polynomial expansion methods. Based on L-P approach, periodic motions are expanded as formal series of in-plane and out-of-plane amplitudes. According to the method of polynomial expansions, a pair of modal coordinates is chosen, and the remaining state variables are expressed as polynomial series about the modal coordinates. In order to check the validity of series solutions constructed, the practical convergence is evaluated. Considering the fact that relative motion model is a special case of restricted three-body problem, the periodic configurations constructed in the model of relative motion are taken as starting solutions to numerically identify the periodic orbits in restricted three-body problem by means of continuation technique with the mass of system as continuation parameter.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献