Experimental Analysis of Eccentric Compression Performance of Larch Wood-Steel Composite Columns

Author:

Wang Junren12,Duan Shaowei12ORCID,He Jiewei12ORCID,Wang Zhifeng12

Affiliation:

1. College of Civil Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China

2. Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China

Abstract

In this paper, a new steel-wood composite column with an H-shaped section was proposed. In order to form an H-shaped cross section, a larch board is fixed on the outer surface of the left and right edges of a hot-rolled H-beam by using physical connection. When the eccentricity is the same, eccentric compression tests were carried out on two types of columns by changing the thickness of the larch board, cross-sectional area of the hot-rolled H-beam, and slenderness ratio in composite columns. Therefore, type A is joined by structural glue only with the larch board and hot-rolled H-beam, and type B is joined by both structural glue and bolts. With the variation of strain and deflection, failure process and failure modes of the hot-rolled H-beam and larch from composite columns under various loads were observed, and the ultimate bearing capacity and stability of composite columns were studied. The test results showed that the overall working performance of the hot-rolled H-beam and larch board was good, and the stability of the hot-rolled H-beam column could be effectively improved. With the increase of wood thickness, cross-sectional area of the hot-rolled H-beam, slenderness ratio of composite columns, and the bearing capacity of the specimens were increased. Moreover, a simplified formula was proposed by the superposition principle. The theoretical analysis accorded with the experimental results, thus providing a reference basis for further study and application of similar steel-wood composite columns.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3