Effects of Upregulation of TNFAIP3 on Diabetic Neuropathic Pain in Mice

Author:

Liu Yang1,Li Jinhe1,Yao Hongbo2,Zhang Meng2,Lian Jie2,Zhang Haiyan2,Zhang Keshuang2,Liu Danyang2,Chen Jiwei2,Wang Yuejing2ORCID,Gao Yin3ORCID

Affiliation:

1. Department of General Surgery, Qiqihar First Hospital, Qiqihar 161006, China

2. Department of Embryology, Qiqihar Medical College, Qiqihar 161006, China

3. Department of Anatomy, Qiqihar Medical College, Qiqihar 161006, China

Abstract

Globally, diabetes has assumed epidemic proportions with the neuropathic complications attributed to the malady emerging as a substantial burden on patients and society. DNP has greatly affected the daily life of patients, the effect of traditional treatment methods is not ideal, and it is easy to produce drug resistance. This work is aimed at scrutinizing the effect of upregulating the expression of TNFAIP3 on diabetic neuralgia in mice. This work entailed ascertaining the effects of TNFAIP3 on a murine DNP system. This inspired us to observe the analgesic effect via high expression of lentivirus-mediated TNFAIP3 by intrathecal injection in the animal model to explore its regulatory impacts, symptom relief, and mechanistic role in pain. The results displayed an attenuation of hind paw pain hypersensitivity by LV-TNFAIP3 in the animals. The spinal cord and dorsal root ganglion of mice with neuropathic pain displayed an evident dip in TNFAIP3. Inhibition of the ERK/NF-κB signaling pathway employing LV-TNFAIP3 conspicuously suppressed this pathway while the diabetic pain hypersensitivity was quelled. This effect was also seen with insulin treatment evidently. In conclusion, according to the above analyses, the interaction between DNP and extracellular signal-regulated kinase signal transduction pathway is one of the key factors of pathogenesis.

Funder

Qiqihar Medical Research Institute Project

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3