Confidence-Aware Embedding for Knowledge Graph Entity Typing

Author:

Zhao Yu1ORCID,Hou Jiayue1,Yu Zongjian1,Zhang Yun1ORCID,Li Qing1

Affiliation:

1. Fintech Innovation Center, School of Computer Science, Southwestern University of Finance and Economics, Chengdu, China

Abstract

Knowledge graphs (KGs) entity typing aims to predict the potential types to an entity, that is, (entity, entity type = ?). Recently, several embedding models are proposed for KG entity types prediction according to the existing typing information of the (entity, entity type) tuples in KGs. However, most of them unreasonably assume that all existing entity typing instances in KGs are completely correct, which ignore the nonnegligible entity type noises and may lead to potential errors for the downstream tasks. To address this problem, we propose ConfE, a novel confidence-aware embedding approach for modeling the (entity, entity type) tuples, which takes tuple confidence into consideration for learning better embeddings. Specifically, we learn the embeddings of entities and entity types in separate entity space and entity type space since they are different objects in KGs. We utilize an asymmetric matrix to specify the interaction of their embeddings and incorporate the tuple confidence as well. To make the tuple confidence more universal, we consider only the internal structural information in existing KGs. We evaluate our model on two tasks, including entity type noise detection and entity type prediction. The extensive experimental results in two public benchmark datasets (i.e., FB15kET and YAGO43kET) demonstrate that our proposed model outperforms all baselines on all tasks, which verify the effectiveness of ConfE in learning better embeddings on noisy KGs. The source code and data of this work can be obtained from https://github.com/swufenlp/ConfE.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference42 articles.

1. Connecting embeddings for knowledge graph entity typing;Y. Zhao

2. Entity linking via joint encoding of types, descriptions, and context;N. Gupta

3. Type-sensitive knowledge base inference without explicit type supervision;P. Jain

4. Zero-shot question generation from knowledge graphs for unseen predicates and entity types;H. Elsahar

5. Freebase: a collaboratively created graph database for structuring human knowledge;K. Bollacker

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3