Affiliation:
1. Petroleum Exploration & Production Research Institute, Sinopec, Beijing, China
2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
Abstract
According to the reservoir characteristics and the current situation of CO2 utilization during thermal recovery in an unconsolidated sandstone heavy oil reservoir, the mechanism and law of porosity and permeability change in an unconsolidated sandstone heavy oil reservoir during CO2+steam and CO2+steam+ sodium alpha-olefin sulfonate (AOS) injection were studied by combining a static monomineral water-rock reaction and a dynamic polymineral sand pack displacement experiment. In the static water-rock reaction between CO2 and monomineral of reservoir rock, the dissolution degree of monomineral at 200°C is greater than that at 100°C and 300°C, and the order of mineral dissolution is illite, montmorillonite, kaolinite, and quartz. Besides, the dissolution rate of single rock minerals decreased significantly in the system of CO2 with AOS. In the polymineral sand pack displacement experiment, the porosity gradually decreases by CO2 multicomponent thermal fluid, and the permeability first decreases and then increases by CO2 multicomponent thermal fluid, but the permeability change is only about 0.5% by CO2+steam+ AOS, which is mainly attributed to the adsorption of AOS on the rock surface, and it is confirmed in the infrared spectrum of unconsolidated sand after displacement. This also shows that CO2+steam+AOS can stabilize the rock skeleton structure of the reservoir and prevent the deterioration of heterogeneity in the subsequent development of thermal recovery of heavy oil reservoirs; therefore, the CO2 multicomponent thermal fluid with chemical agents can improve the damage of a single CO2 thermal fluid to the reservoir.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献