Affiliation:
1. MOE KLINNS Laboratory, Institute of Integrated Automation, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shanxi 710049, China
Abstract
A multiextended-target tracker based on the extended target Gaussian-mixture probability hypothesis density (ET-GMPHD) filter, which can provide the tracks of the extended targets, is proposed to maintain the track continuity for the extended targets. To identify the extended targets, each individual Gaussian term of the mixture representing the posterior intensity function will be assigned a label, which is evolved through time. Then a track management scheme, including track initiation, track confirmation, track propagation, and termination, is developed to form the tracks for the extended targets. Furthermore, to improve the performance of the extended target tracker we also propose a mixture partitioning algorithm for resolving the identities of the extended targets in close proximity. The simulation results show that our proposed tracker achieves the less error of the position estimates and decreases the probability of incorrect label assignments from 0.6 to 0.25.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献