Nonlinear Robust Backstepping Control for Three-Phase Grid-Connected PV Systems

Author:

Boujmil Mohamed Habib1,Badis Afef2ORCID,Nejib Mansouri Mohamed2

Affiliation:

1. Higher Institute of the Technological Studies of Nabeul, Nabeul, Tunisia

2. Electronics and Microelectronics Laboratory (EμE), The National Engineering School of Monastir (ENIM), University of Monastir, Monastir, Tunisia

Abstract

This paper proposes a cascade control structure for three-phase grid-connected Photovoltaic (PV) systems. The PV system consists of a PV Generator, DC/DC converter, a DC link, a DC/AC fully controlled inverter, and the main grid. For the control process, a new control strategy using nonlinear Backstepping technique is developed. This strategy comprises three targets, namely, DC/DC converter control; tight control of the DC link voltage; and delivering the desired output power to the active grid with unity power factor (PF). Moreover, the control process relies mainly on the formulation of stability based on Lyapunov functions. Maximizing the energy reproduced from a solar power generation system is investigated as well by using the Perturb and Observe (P&O) algorithm. The Energetic Macroscopic Representation (EMR) and its reverse Maximum Control Structure (MCS) are used to provide, respectively, an instantaneous average model and a cascade control structure. The robust proposed control strategy adapts well to the cascade control technique. Simulations have been conducted using Matlab/Simulink software in order to illustrate the validity and robustness of the proposed technique under different operating conditions, namely, abrupt changing weather condition, sudden parametric variations, and voltage dips, and when facing measurement uncertainties. The problem of controlling the grid-connected PV system is addressed and dealt by using the nonlinear Backstepping control.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3