Polyphenol Polymerization by an Alternative Oxidative Microbial Enzyme and Characterization of the Biological Activity of Oligomers

Author:

Di Gennaro Patrizia1ORCID,Sabatini Valentina23,Fallarini Silvia4,Pagliarin Roberto3,Sello Guido3

Affiliation:

1. Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy

2. CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy

3. Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy

4. Department of Pharmacy, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy

Abstract

The recombinant catalase-peroxidase HPI from E. coli was used as an alternative enzyme in polymerization reactions for the production of (−) epicatechin oligomers and their biological activity was characterized. The enzyme was prepared in two forms: a purified and an immobilized form. Both were tested for their activity in oxidative polymerization reactions, and their stability and reusability were assessed. The polymerization reactions were followed by SEC-HPLC analyses, and the substrate was completely converted into one or more polymerization products depending on the reactions conditions. Results showed that the utilized conditions allowed for the isolation of some oligomers of different molecular weight: the oligomers containing 6 and 7 units of epicatechin substrate are the heaviest ones. Epicatechin was also used in reactions catalyzed by HRP in the same reaction conditions for comparison. In addition, one selected oligomer obtained by HPI enzyme catalysis was shown to act as in vitro inhibitor of tumor cell growth, like one oligomer deriving from epicatechin by HRP catalysis. These data confirm that epicatechin oligomeric form is more effective than its monomer in biological activity and suggest the use of HPI as an alternative enzyme in reactions for the production of epicatechin oligomers.

Funder

U.S. Army

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3