Effect of Microwave Pretreatment on Grindability of Lead-Zinc Ore

Author:

Yu Qing123,Ding Dexin12,Chen Wenguang2,Hu Nan12,Wu Lingling1,Zhang Qiucai1,Liu Yulong2,Zhang Zhijun1ORCID,Li Feng12,Xue Xilong1,Li Zhaopeng4,He Guicheng12ORCID

Affiliation:

1. School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China

2. Key Discipline Laboratory of Defense Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China

3. State Key Laboratory of Safety and Health for Metal Mines, Maanshan 243000, China

4. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

The influence of microwave pretreatment on grindability of lead-zinc ore was studied through comparison analysis on the changes of particle size distribution, percentage of below 0.074 mm, energy consumption, and other indexes of grinding products before and after microwave pretreatment in the ball milling process. The results showed that the grindability of lead-zinc ore was improved obviously by microwave pretreatment. The particle size distribution curve of the grinding products was obviously higher than that of the samples without microwave irradiation. The yield of size fraction below 0.074 mm was also improved in a certain degree. Pulsed microwave irradiation was more effective than continuous microwave irradiation when other microwave parameters were consistent. The comprehensive energy consumption of lead-zinc ore pretreated by different microwave parameters was lower than that without microwave irradiation under the same grinding fineness. The total energy consumption was down by 30.1% when irradiated for 15 s at 7 kW power, and it was lower than that without microwave irradiated. The results showed that pulsed microwave pretreatment was more effective in reducing the comprehensive energy consumption of grinding process for lead-zinc ore. And water quenching after microwave irradiation can improve the grindability and reduce the energy consumption of grinding for lead-zinc ore.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3