Modeling the Smart Factory Manufacturing Products Characteristics: The Perspective of Energy Consumption

Author:

Salman Rahman A.B.M.1,Lee Myeongbae1,Lim Jonghyun1,Cho Yongyun1,Shin Changsun1ORCID

Affiliation:

1. Department of Information & Communication Engineering, Sunchon National University, Suncheon 57922, Republic of Korea

Abstract

Economic progress is built on the foundation of energy. In the industrial sector, smart factory energy consumption analysis and forecasts are crucial for improving energy consumption rates and also for creating profits. The importance of energy analysis and forecasting in an industrial environment is increasing speedily. It is a great chance to provide a technical boost to smart factories looking to reduce energy usage and produce more profit through the control and optimization modeling. It is tough to analyze energy usage and make accurate estimations of industrial energy consumption. Consequently, this study examines monthly energy consumption to identify the discrepancy between energy usages and energy needs. It depicts the link between energy consumption, demand, and various industrial goods by pattern recognition. The correlation technique is utilized in this study to figure out the link between energy usage and the weight of various materials used in product manufacturing. Next, we use the moving average approach to calculate the monthly and weekly moving averages of energy usages. The use of data-mining techniques to estimate energy consumption rates based on production is increasingly prevalent. This study uses the autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) to compare the actual data with forecasting data curves to enhance energy utilization. The Root Mean Square Error (RMSE) performance evaluation result for ARIMA and SARIMA is 8.70 and 10.90, respectively. Eventually, the Variable Important technique determines the smart factory’s most essential product to enhance the energy utilization rate and obtain profitable items for the smart factory.

Funder

Sunchon National University

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bayesian Optimization Approach of Ensemble and Decision Tree Learning Applied to Industrial Energy Consumption Prediction;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3