Affiliation:
1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
2. China Aerospace Construction Group Co, Ltd., Beijing 100071, China
3. State Forestry Planning and Design Institute of Forest Products Industry, Beijing 100009, China
Abstract
The large-span floor system being lightweight with low frequency and low damping is prone to suffer severe vibration under human excitations. In this research, the vibration performance of an innovative large-span U-shaped steel-concrete composite hollow waffle (CHW) slab was studied based on field testing and theoretical analysis. First, the modal properties of CHW slab including mode shapes, frequencies, and damping ratio were captured by on-site tests and validated by the finite element method, indicating the CHW slab is a low-frequency floor system with a low damping ratio. Second, the vibration responses of CHW slab under heel-drop and jumping excitations were studied considering the impacts of spatial position, tester number, and activity types. Third, the CHW slab shows excellent vibration serviceability proved by the frequency, accelerations, and human perceptions threshold with the current codes. Meanwhile, the paper gives appropriate threshold values for the CHW slab under impulsive excitation. Finally, the natural frequency formula for the CHW slab derived by the Rayleigh–Ritz energy method agrees well with the measurements.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献