Affiliation:
1. Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
2. The First Hospital of University of Chinese Medicine, Changsha 410007, China
Abstract
Most free drugs that cross the blood–brain barrier are characterized by high liposolubility, but they often have limited clinical applications because of poor dissolution and poor bioavailability. In this study, we prepared donepezil drug-loaded nanoparticles (DZP) with cholesterol-modified pullulan (CHP) as the nanocarrier (DZP-CHP) and surface modified the drug-loaded nanoparticles to improve the water solubility of donepezil while enhancing its targeting and sustained release. We determined the drug loading and encapsulation efficiency of DZP-CHP nanoparticles at different feed ratios. The mean ± SD drug loading and entrapment efficiency were high: 13.52 ± 2.03 and 86.54 ± 1.31. On dynamic light-scattering measurement, mean ± SD particle size was 260.7 ± 1.76 nm, polydispersity index 0.123 ± 0.004, and zeta potential −5.75 ± 0.64 mV. DZP-CHP nanoparticles prepared with the optimal feed ratio (DZP : CHP = 1 : 5) were coated with polysorbate 80, and the adsorption process was determined by isothermal titration calorimetry. We found good affinity between polysorbate 80 and DZP-CHP, with mean ± SD coverage 2.7 ± 0.372. The mean ± SD drug loading and entrapment efficiency of polysorbate 80-emulsified DZP-CHP nanoparticles were 8.25 ± 1.80 and 91.28 ± 4.57, respectively, and the proportion of drug released by 72 h was 42.71%. Compared to DZP-CHP alone, PS-DZP-CHP can enhance the release of donepezil.
Funder
Changsha Science and Technology Bureau Project
Subject
General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献