Preparation and Drug Release Study of Novel Nanopharmaceuticals with Polysorbate 80 Surface Adsorption

Author:

Tao Xiaojun1,Li Yu1,Hu Qian1,Zhu Li1,Huang Zixuan1,Yi Jiajin1,Yang Xiaoping1ORCID,Hu Jianzhuo2,Feng Xing1ORCID

Affiliation:

1. Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China

2. The First Hospital of University of Chinese Medicine, Changsha 410007, China

Abstract

Most free drugs that cross the blood–brain barrier are characterized by high liposolubility, but they often have limited clinical applications because of poor dissolution and poor bioavailability. In this study, we prepared donepezil drug-loaded nanoparticles (DZP) with cholesterol-modified pullulan (CHP) as the nanocarrier (DZP-CHP) and surface modified the drug-loaded nanoparticles to improve the water solubility of donepezil while enhancing its targeting and sustained release. We determined the drug loading and encapsulation efficiency of DZP-CHP nanoparticles at different feed ratios. The mean ± SD drug loading and entrapment efficiency were high: 13.52 ± 2.03 and 86.54 ± 1.31. On dynamic light-scattering measurement, mean ± SD particle size was 260.7 ± 1.76 nm, polydispersity index 0.123 ± 0.004, and zeta potential −5.75 ± 0.64 mV. DZP-CHP nanoparticles prepared with the optimal feed ratio (DZP : CHP = 1 : 5) were coated with polysorbate 80, and the adsorption process was determined by isothermal titration calorimetry. We found good affinity between polysorbate 80 and DZP-CHP, with mean ± SD coverage 2.7 ± 0.372. The mean ± SD drug loading and entrapment efficiency of polysorbate 80-emulsified DZP-CHP nanoparticles were 8.25 ± 1.80 and 91.28 ± 4.57, respectively, and the proportion of drug released by 72 h was 42.71%. Compared to DZP-CHP alone, PS-DZP-CHP can enhance the release of donepezil.

Funder

Changsha Science and Technology Bureau Project

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3