Analysis of Long-Range Transport of Carbon Dioxide and Its High Concentration Events over East Asian Region Using GOSAT Data and GEOS-Chem Modeling

Author:

Kim Seung-Yeon1,Lee Sang-Deok1,Lee Jae-Bum1,Kim Deok-Rae1,Han Jin-Seok1,Choi Kwang-Ho2,Song Chang-Keun1

Affiliation:

1. Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea

2. Department of General Education, Namseoul University, Cheonan 331-707, Republic of Korea

Abstract

This study aims to evaluate the long-range transport of CO2in East Asian region, using concentration data in a surface measurement site (Gosan Station), column averaged concentration data of satellite-borne instrument (GOSAT), and GEOS-Chem modeling results for the period of June 2009 to May 2011. We perform a validation of the data from GOSAT and GEOS-Chem with total column observations (TCCON). The analysis of the long-range transport and high concentration (HC) events using surface/satellite observations and modeling results is conducted. During the HC events, the concentrations in CO2and other air pollutants such as SO2and CO are higher than that of all episodes. It means that CO2, known as a globally well-mixed gas, may also act as a fingerprint of human activity with unique regional characteristics like other air pollutants. This comprehensive analysis, in particular with GOSAT CO2observation data, shows that CO2plume with high concentration can be long-range transported with 1-2 days’ duration with regional scale. We can find out with GEOS-Chem tagging simulation that more than 45% of the elevated CO2concentration over central/eastern China, Korea, and Japan on high concentration days can be explained by emission sources of East Asia mainland.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3