Stability of Real Parametric Polynomial Discrete Dynamical Systems

Author:

Franco-Medrano Fermin12,Solis Francisco J.1

Affiliation:

1. Applied Mathematics, CIMAT, 36240 Guanajuato, GTO, Mexico

2. Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

Abstract

We extend and improve the existing characterization of the dynamics of general quadratic real polynomial maps with coefficients that depend on a single parameterλand generalize this characterization to cubic real polynomial maps, in a consistent theory that is further generalized to realmth degree real polynomial maps. In essence, we give conditions for the stability of the fixed points of any real polynomial map with real fixed points. In order to do this, we have introduced the concept ofcanonical polynomial mapswhich are topologically conjugate to any polynomial map of the same degree with real fixed points. The stability of the fixed points of canonical polynomial maps has been found to depend solely on a special function termedProduct Position Functionfor a given fixed point. The values of this product position determine the stability of the fixed point in question, when it bifurcates and even when chaos arises, as it passes through what we have termedstability bands. The exact boundary values of these stability bands are yet to be calculated for regions of type greater than one for polynomials of degree higher than three.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3