Identification of Six N7-Methylguanosine-Related miRNA Signatures to Predict the Overall Survival and Immune Landscape of Triple-Negative Breast Cancer through In Silico Analysis

Author:

Xu Jing1,Cen Xiaoxia1,Yao Yu1,Zhao Suo1,Li Wei1,Zhang Wei1ORCID,Qiu Ming1ORCID

Affiliation:

1. Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China

Abstract

Triple-negative breast cancer (TNBC) is a widely prevalent breast cancer, with a mortality rate of up to 25%. TNBC has a lower survival rate, and the significance of N7-methylguanosine (m7G) modification in TNBC remains unclear. Thus, this study is aimed at investigating m7G-related miRNAs in TNBC patients through in silico analysis. In our research, RNA sequencing and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The miRNAs targeting typical m7G modification regulators Methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) were predicted on the TargetScan website. A miRNA risk model was built, and its prognostic value was evaluated by R soft packages. Single-sample gene set enrichment analysis was used to assess immune infiltration, and further expression of immune checkpoints was investigated. As a result, miR-421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p, and miR-4505 were identified to create the risk model. A nomogram consisting of the stage N and risk model predicted overall survival effectively among TNBC patients. Treg and TIL were shown to be strongly linked to the risk model, and the high-risk group had higher levels of four immune checkpoints expression (CD28, CTLA-4, ICOS, and TNFRSF9). A risk model consisting of m7G-related miRNAs was constructed. The findings of the current study could be used as a prognostic biomarker and can provide a novel immunotherapy insight for TNBC patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3