Empirical Wavelet Transform Based ECG Signal Filtering Method

Author:

Elouaham S.1ORCID,Dliou A.1ORCID,Jenkal W.1ORCID,Louzazni M.2ORCID,Zougagh H.3ORCID,Dlimi S.4ORCID

Affiliation:

1. Information Systems and Technology Engineering Laboratory, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco

2. Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida, Morocco

3. Informatic Department, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco

4. Information and Communication Science and Technology Laboratory, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco

Abstract

The electrocardiogram (ECG) is a diagnostic tool that provides insights into the heart’s electrical activity and overall health. However, internal and external noises complicate accurate heart issue diagnosis. Noise in the ECG signal distorts and introduces artifacts, making it difficult to detect subtle abnormalities. To ensure an accurate evaluation, noise-free ECG signals are crucial. This study introduces the empirical wavelet transform (EWT), a contemporary denoising method. EWT decomposes the signal into frequency components, allowing detailed analysis by constructing a customized wavelet basis. Researchers and practitioners can enhance signal analysis by separating the desired components from unwanted noise. The EWT approach effectively eliminates noise while maintaining signal information. The study applies DWT-ADTF, FST, Kalman, Liouville–Weyl fractional compound integral filter LW, Weiner, and EWT denoising methods to two ECG databases from MIT-BIH, which encompass a wide range of cardiac signals and noise levels. The comparative analysis highlights EWT’s strengths through improved signal quality and objective performance metrics. This adaptive transform proves promising for denoising ECG signals and facilitating accurate analysis in clinical and research settings.

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3