Vehicle-Bridge Coupling Vibration Analysis for Simply Supported Girders of High-Speed Railway Bridges Based on the Cross-Sectional Decentralized Centre of Mass and Shear

Author:

Daihai Chen1ORCID,Shuai Zhou1ORCID,Shizhan Xu1ORCID,Zheng Li1ORCID,Yilin Fang2ORCID

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Henan Expressway Development Corporation Ltd., Zhengzhou, Henan 450052, China

Abstract

Taking the simply supported box girder bridge of high-speed railway as an example, the effect of cross-sectional decentralized centre of mass and shear on the spatial beam element stiffness matrix was theoretically derived. Based on the vehicle-bridge coupling vibration analysis method of the railway bridge, an analysis program of vehicle-bridge coupling vibration for the high-speed railway was compiled, and its reliability was verified through an example analysis. On this basis, considering the cross-sectional decentralized centre of mass and shear, the influence factors of vehicle-bridge coupling vibration response were studied, which included the offset distance of the beam section’s mass and shear centre, offset distance of track centreline, vehicle weight, and vehicle speed. The results show that the additional items of the spatial beam element stiffness matrix are generated by the torsion effect when the cross-sectional decentralized centre of mass and shear is considered, and it will affect the lateral and vertical stiffness of the element. The cross-sectional decentralized centre of mass and shear has a significant effect on the lateral dynamic response of the bridge’s mid-span, but the influence on the vertical response of the bridge and the dynamic response of the car body is small. The main influence factors of the lateral dynamic response of the bridge are the vertical offset distance of the beam section’s centre of mass and shear, the lateral offset distance of the track centreline, and the vehicle weight.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference20 articles.

1. Simplified vehicle–bridge interaction for medium to long-span bridges subject to random traffic load

2. State-of-the-art review and trend of studies on vehicle-bridge interaction;X. Z. Li;Journal of the China Railway Society,2002

3. Deformation control limit of long-span concrete arch bridge of high-speed railway;X. L. Zheng;China Railway Science,2019

4. Effect of short-wave component in rail irregularity on the coupled dynamic responses of train and simpl-supported bridge;Z. H. Zhu;Journal of Hunan University,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3