Electrochemical Determination of Paracetamol Using Fe3O4/Reduced Graphene-Oxide-Based Electrode

Author:

Thu Nguyen Thi Anh1,Duc Hoang Van1,Hai Phong Nguyen2,Cuong Nguyen Duc3ORCID,Hoan Nguyen Thi Vuong4ORCID,Quang Khieu Dinh2ORCID

Affiliation:

1. University of Education, Hue University, Hue 530000, Vietnam

2. University of Sciences, Hue University, Hue 530000, Vietnam

3. Faculty of Tourism and Hospitality, Hue University, Hue 530000, Vietnam

4. Department of Chemistry, Quy Nhon University, Quy Nhon 590000, Vietnam

Abstract

The synthesis of magnetic iron oxide/reduced graphene oxide (Fe3O4/rGO) and its application to the electrochemical determination of paracetamol using Fe3O4/rGO modified electrode were demonstrated. The obtained materials were characterized by means of X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and magnetic measurement. The results showed that Fe3O4/rGO composite exhibited high specific surface area, and its morphology consists of very fine spherical particles of Fe3O4 in nanoscales. Fe3O4/rGO was used as an electrode modifier for the determination of paracetamol by differential pulse-anodic stripping voltammetry (DP-ASV). The preparation of Fe3O4/rGO-based electrode and some factors affecting voltammetric responses were investigated. The results showed that Fe3O4/rGO is a potential electrode modifier for paracetamol detection by DP-ASV with a low limit of detection. The interfering effect of uric acid, ascorbic acid, and dopamine on the current response of paracetamol has been reported. The repeatability, reproducibility, linear range, and limit of detection were also addressed. The proposed method could be applied to the real samples with satisfactory results.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3