Biomechanical Comparison of Three Different Intramedullary Nails for Fixation of Unstable Basicervical Intertrochanteric Fractures of the Proximal Femur: Experimental Studies

Author:

Kwak Dae-Kyung1,Kim Won-Hyeon2ORCID,Lee Sung-Jae2ORCID,Rhyu Sang-Hyun1,Jang Chul-Young1,Yoo Je-Hyun1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University School of Medicine, Anyang, Republic of Korea

2. Department of Biomedical Engineering, Inje University, Kimhae, Republic of Korea

Abstract

Objectives. This biomechanical study was conducted to compare fixation stability of the proximal fragments and their mechanical characteristics in proximal femur models of unstable basicervical IT fractures fixed by cephalomedullary nailing using 3 different types of the femoral head fixation.Methods. A total of 36 composite femurs corresponding to osteoporotic human bone were used. These specimens were fixed with Gamma 3 (hip screw type; group 1) in 12, Gamma 3 U-blade (screw-blade hybrid type; group 2) in 12, and proximal femoral nail antirotation-II (helical blade type; group 3) in 12, respectively, and an unstable basicervical IT fracture was created by an engraving machine. After preloading and cyclic loading, the migration of the proximal fragment according to 3 axes was assessed by the stereophotogrammetric method and the migration of screw or blade tip within the femoral head was measured radiographically. Next, the vertical load was continued at a speed of 10 mm/min until the construct failure occurred. Finite element analysis was additionally performed to measure the stress and compressive strain just above the tip of screw or blade within the femoral head.Results. The rotational change of the proximal fragment according to the axis of screw or blade was much greater in group 1 than in groups 2 and 3 (p=0.016 and p=0.007, respectively). Varus collapse was greater in group 3 than in group 2 (p=0.045). Cranial and axial migration of screw or blade within the femoral head were significantly greater in group 3 than in both group 1 (p=0.001 and p=0.002, respectively) and group 2 (p=0.002 and p=0.016, respectively). On finite element analysis, group 3 showed the highest peak von-Mises stress value (13.3 MPa) and compressive strain (3.2%) just above the tip of the blade within the femoral head. Meanwhile, groups 1 and 2 showed similar results on two values.Conclusions. Screw-blade hybrid type and blade type would be more effective in minimizing rotation instability of the proximal fragment in unstable basicervical IT fractures. However, varus collapse of the proximal fragment and cranial and axial migration within the femoral head were greater with blade type than screw-blade hybrid type.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3