Affiliation:
1. College of Computer Science and Engineering, Northwest Normal University, China
Abstract
With the popularity of swarm intelligence algorithms, the positioning of nodes to be located in wireless sensor networks (WSNs) has received more and more attention. To overcome the disadvantage of large ranging error and low positioning accuracy caused by the positioning algorithm of the received signal strength indication (RSSI) ranging model, we use the RSSI modified by Gaussian to reduce the distance measurement error and introduce an improved whale optimization algorithm to optimize the location of the nodes to be positioned to improve the positioning accuracy. The experimental results show that the improved whale algorithm performs better than the whale optimization algorithm and other swarm intelligence algorithms under 20 different types of benchmark function tests. The positioning accuracy of the proposed location algorithm is better than that of the original RSSI algorithm, the hybrid exponential and polynomial particle swarm optimization (HPSO) positioning algorithms, the whale optimization, and the quasiaffine transformation evolutionary (WOA-QT) positioning algorithm. It can be concluded that the cluster intelligence algorithm has better advantages than the original RSSI in WSN node positioning, and the improved algorithm in this paper has more advantages than several other cluster intelligence algorithms, which can effectively solve the positioning requirements in practical applications.
Funder
National Students’ Project for Innovation and Entrepreneurship Training Program, China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献