Experimental Centrifuge Study of the Effects of Valley Topography on the Behavior of a Concrete Face Rockfill Dam

Author:

Tian Chao1ORCID,Zhang Xuedong2,Wen Lifeng1

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. China Institute of Water Resources and Hydropower Research, Beijing 100044, China

Abstract

The recent focus on water conservancy projects globally has resulted in the construction of increased numbers of concrete face rockfill dams in narrow valleys. However, valley topography impacts the deformation of a dam and further influences the distribution of stress and position of cracks on the face slab. This study conducted two centrifuge experiments to study the influence of the valley topography on the behavior of a concrete face rockfill dam from construction to impoundment. Experimental models of concrete face slab sand-gravel dams with “U”-type and “V”-type valley topographies were established. The settlement of the dam crest, the displacement of the upstream slope of the dam, and the stress on both sides of the face slab were observed. The experiment also represented the cracking of the face slab during impoundment. The results showed that the “V”-type valley topography effectively reduced the progression of dam crest settlement and influenced stress on the slab resulting from impounded water pressure. Furthermore, the flexural form of the face slab in the “U”-type valley topography took on a “D” shape and cracks progressively developed on the face slab with increased water load. The flexural form of the face slab in the “V”-type valley topography showed a “B” shape, and cracks occurred under a particular water impoundment pressure.

Funder

National Funds for Distinguished Young Youths

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3