Pedestrian Re-Recognition Algorithm Based on Optimization Deep Learning-Sequence Memory Model

Author:

An Feng-Ping12ORCID

Affiliation:

1. School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China

2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Pedestrian re-recognition is an important research because it affects applications such as intelligent monitoring, content-based video retrieval, and human-computer interaction. It can help relay tracking and criminal suspect detection in large-scale video surveillance systems. Although the existing traditional pedestrian re-recognition methods have been widely applied to address practical problems, they have deficiencies such as low recognition accuracy, inefficient computation, and difficulty to adapt to specific applications. In recent years, the pedestrian re-recognition algorithms based on deep learning have been widely used in the pedestrian re-recognition field because of their strong adaptive ability and high recognition accuracy. The deep learning models provide a technical approach for pedestrian re-recognition tasks with their powerful learning ability. However, the pedestrian re-recognition method based on deep learning also has the following problems: First, the existing deep learning pedestrian re-recognition methods lack memory and prediction mechanisms, and the deep learning methods offer only limited improvement to pedestrian re-recognition accuracy. Second, they exhibit overfitting problems. Finally, initializing the existing LSTM parameters is problematic. In view of this, this paper introduces a revertive connection into the pedestrian re-recognition detector, making it more similar to the human cognitive process by converting a single image into an image sequence; then, the memory image sequence pattern reidentifies the pedestrian image. This approach endows deep learning-based pedestrian re-recognition algorithms with the ability to memorize image sequence patterns and allows them to reidentify pedestrians in images. At the same time, this paper proposes a selective dropout method for shallow learning. Selective dropout uses the classifier obtained through shallow learning to modify the probability that a node weight in the hidden layer is set to 0, thereby eliminating the overfitting phenomenon of the deep learning model. Therefore, this paper also proposes a greedy layer-by-layer pretraining algorithm for initializing LSTM and obtains better generalization performance. Based on the above explanation, this paper proposes a pedestrian re-recognition algorithm based on an optimized LSTM deep learning-sequence memory learning model. Experiments show that the pedestrian re-recognition method proposed in this paper not only has strong self-adaptive ability but also identifies the average accuracy. The proposed method also demonstrates a significant improvement compared with other mainstream methods because it can better memorize and learn the continuous motion of pedestrians and effectively avoid overfitting and parameter initialization in the deep learning model. This proposal provides a technical method and approach for adaptive pedestrian re-recognition algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Pedestrian Re-identification Techniques in Dynamic Scenes Using Convolutional Neural Networks;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. The application value of behavior analysis based on deep learning in the evaluation of depression in art students;Applied Mathematics and Nonlinear Sciences;2024-01-01

3. A Pedestrian Re-Identification Network Based on Multi-Granularity Feature Extraction;2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA);2023-11-28

4. Recognition Algorithm of Transaction Risk Events in Automobile Financial Market Based on Deep Learning;2023 International Conference on Electronics and Devices, Computational Science (ICEDCS);2023-09-22

5. Construction and Optimization of Carbon Emission Prediction Model Based on Deep Learning;Proceedings of the 2023 International Joint Conference on Robotics and Artificial Intelligence;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3