Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice

Author:

Huang Tousheng1ORCID,Zhang Huayong1ORCID,Cong Xuebing1ORCID,Pan Ge1ORCID,Zhang Xiumin1ORCID,Liu Zhao1ORCID

Affiliation:

1. Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China

Abstract

The topic of utilizing coupled map lattice to investigate complex spatiotemporal dynamics has attracted a lot of interest. For exploring the spatiotemporal complexity of a predator-prey system with migration and diffusion, a new three-chain coupled map lattice model is developed in this research. Based on Turing instability analysis, pattern formation conditions for the predator-prey system are derived. Via numerical simulation, rich Turing patterns are found with subtle self-organized structures under diffusion-driven and migration-driven mechanisms. With the variation of migration rates, the predator-prey system exhibits a gradual dynamical transition from diffusion-driven patterns to migration-driven patterns. Moreover, new results, the self-organization of non-Turing patterns, are also revealed. We find that even in the cases where the nonspatial predator-prey system reaches collapse, the migration can still drive pattern self-organization. These non-Turing patterns suggest many new possible ways for the coexistence of predator and prey in space, under the effects of migration and diffusion.

Funder

National Water Pollution Control and Treatment Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3