Affiliation:
1. Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
Abstract
Observations from past earthquake events indicate that skewed bridges are seismically vulnerable due to induced horizontal in-plane rotations of the girder. To date, however, very limited experimental research has been done on the pounding behaviour of skewed bridges. In this study, shake table tests were performed on a single-frame bridge model with adjacent abutments subjected to uniform ground excitations. Bridges with different skew angles, i.e., 0°, 30°, and 45°, were considered. The pounding behaviour was observed using a pair of pounding and measuring heads. The results reveal that poundings could indeed influence the responses of skewed bridges in the longitudinal and transverse directions differently and thus affect the development of the girder rotations. Ignoring pounding effects, the 30° skewed bridges could experience more girder rotations than the 45° skewed bridges. With pounding, the bridges with a large skew angle could suffer more opening girder displacements than straight bridges.
Funder
Ministry of Business, Innovation and Employment
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献