An Interval-Based Evolutionary Approach to Portfolio Optimization of New Product Development Projects

Author:

Fernandez Eduardo1,Gomez-Santillan Claudia2ORCID,Rangel-Valdez Nelson3ORCID,Cruz-Reyes Laura2ORCID,Balderas Fausto2ORCID

Affiliation:

1. Faculty of Civil Engineering, Autonomous University of Sinaloa, 80040 Sinaloa, Mexico

2. Postgraduate & Research Division, National Mexican Institute of Technology/Madero Institute of Technology, 89440 Tamaulipas, Mexico

3. CONACYT-Research Fellow, National Mexican Institute of Technology/Madero Institute of Technology, 89440 Tamaulipas, Mexico

Abstract

The growth of large enterprises in the manufacturing market commonly depends on good New Product Development (NPD) projects; these projects represent a strategy to overcome competitors inside a competitive environment. The management of such projects is usually complex and involves risk due to the changing and conflicting environment. The approaches that tackle the problem lack an explicit consideration of the DM’s attitude facing uncertainty and imprecision related to the risk and particularly in the presence of time-interdependencies. This paper proposes a model of the time-related effects, under imperfect knowledge, and their influence in choosing optimal NPD portfolios. The proposed approach is an interval-based method to solve NPD portfolio optimization problems under different forms of imperfect knowledge. This approach has the advantage of a unified and simple way to model the different sources of imprecision, vagueness, uncertainty, and arbitrariness. The attitude of the DM facing the imperfect knowledge is adjusted by using some meaningful parameters. The research focuses particularly in creating a method useful for risk-averse DMs. The proposal was tested through an experimental design that compared the results achieved by the new method against the expected value in portfolios. The results revealed that high levels of conservatism might prevent wasting resources in failed projects.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3