Personalized Recommendation System Design for Library Resources through Deep Belief Networks

Author:

Liu Minyu1ORCID

Affiliation:

1. Hubei Thinker Culture Communication Co Ltd., Wuhan 430079, China

Abstract

In recent years, with the continuous development of science and Internet technology, people’s lifestyles are changing dramatically, especially with the development of information technology, which has contributed to the transformation of digital libraries. As an essential information infrastructure and a new source of knowledge, digital libraries have brought great convenience to users. To be specific, with the widespread use of smart devices and internet of things technology, users are eager to be intelligent in their information needs while enjoying services, which makes the resource recommendation service of digital libraries increasingly important. In addition, as a provider of knowledge and information services, libraries should organically combine advanced information technology with existing resources to promote the construction of libraries in the information age. However, in the era of big data, users can only passively receive a large amount of information and services in the face of the ever-expanding mass of resources in digital libraries. In this context, libraries might only provide a single set of information resources and services, which cannot meet the individual needs of users and ultimately leads to inefficient allocation of resources and information. After all, users of digital libraries want to be better able to receive personalized recommendations for library resources through relevant technologies. At the same time, libraries are increasing their research and development efforts on algorithms and technologies for personalized recommendations. Also, with the explosive growth of the total amount of information worldwide, people are entering the information age. Massive amounts of data are constantly being generated, and the problem of information overload is becoming more and more serious. The sheer volume of this data and information increases the degree of difficulty in accessing the information people need. In this situation, it is necessary for digital libraries to dynamically analyze user behavior and interests while responding to user requests in a timely manner and accordingly take the initiative to recommend information resources and knowledge services that meet users’ individual needs. As a result, this study uses a deep belief network model for multimodal feature learning and designs a personalized recommendation system for library resources by fusing features from multiple modalities. Furthermore, this research implements the construction of a semantic user interest model and the design of a personalized recommendation algorithm to achieve an accurate description of user interest preferences and semantic personalized recommendation functions.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3