Digital Development for Music Appreciation of Information Resources Using Big Data Environment

Author:

Li Yi1ORCID

Affiliation:

1. Foundation Department, Jiangxi Technical College of Manufacturing, Nanchang 330095, Jiangxi, China

Abstract

With the continuous development of information technology and the arrival of the era of big data, music appreciation has also entered the digital development. Big data essence is highlighted by comparison with traditional data management and processing technologies. Under different requirements, the required time processing range is different. Music appreciation is an essential and important part of music lessons, which can enrich people’s emotional experience, improve aesthetic ability, and cultivate noble sentiments. Data processing of music information resources will greatly facilitate the management, dissemination, and big data analysis and processing of music resources and improve the ability of music lovers to appreciate music. This paper aims to study the digital development of music in the environment of big data, making music appreciation more convenient and intelligent. This paper proposes an intelligent music recognition and appreciation model based on deep neural network (DNN) model. The use of DNN allows this study to have significant improvement over the traditional algorithm. This paper proposes an intelligent music recognition and appreciation model based on the DNN model and improves the traditional algorithm. The improved method in this paper refers to the Dropout method on the traditional DNN model. The DNN is trained on the database and tested on the data. The results show that, in the same database, the traditional DNN model is 114 and the RNN model is 120. The PPL of the improved DNN model in this paper is 98, i.e., the lowest value. The convergence speed is faster, which indicates that the model has stronger music recognition ability and it is more conducive to the digital development of music appreciation.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference21 articles.

1. The art of listening: listening skill development, classical music appreciation, and personal response through visual art in a middle school program;C. Smiraglia;Research and issues in music education,2018

2. Segmenting beyond behavioural intentions - fine tuning music festival visitors’ music appreciation;M. Kruger;International Journal of Event & Festival Management,2017

3. Pupil voice and attitudes to music during the transition to secondary school

4. The impact of single-sided deafness upon music appreciation;M. Sarah;Journal of the American Academy of Audiology,2017

5. Music and the brain: the neuroscience of music and musical appreciation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3