Affiliation:
1. Department of Metrology, China Electric Power Research Institute, Wuhan 430070, China
Abstract
Nonintrusive load monitoring (NILM) is a widely accepted technology to conduct load monitoring. Many effective methods have been established to make NILM more practical. However, the focus of current methods is mainly on the identification accuracy and efficiency of single load under the individual appliance operated independently, which have limited support for the identification problem under multiple appliances operated simultaneously. Therefore, a simultaneous identification method is proposed to efficiently identify the total load under multiple appliances operated simultaneously in this paper. The proposed identification method mainly consists of three parts: hybrid features extraction, simultaneous identification optimization model construction, and frequency-weighting-factor-based genetic algorithm (FWF-GA). Firstly, the hybrid feature model, which integrates the features of active power, reactive power, and harmonic magnitude, is constructed by hybrid features extraction. Secondly, the simultaneous identification optimization model is constructed by employing the features of active and reactive power. Thirdly, the developed FWF-GA is used to solve the simultaneous identification optimization problem. In FWF-GA, the relative errors of active power, reactive power, and the frequency-weighting factor of harmonic magnitude are used to evaluate the fitness of an individual. Finally, a NILM practice to identify household appliances is used to demonstrate the validity of the proposed method.
Funder
State Grid Corporation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献