Simultaneous Load Identification Method Based on Hybrid Features and Genetic Algorithm for Nonintrusive Load Monitoring

Author:

Yi Shu-Hui1ORCID,Wang Jian1,Liu Jun-Jie1

Affiliation:

1. Department of Metrology, China Electric Power Research Institute, Wuhan 430070, China

Abstract

Nonintrusive load monitoring (NILM) is a widely accepted technology to conduct load monitoring. Many effective methods have been established to make NILM more practical. However, the focus of current methods is mainly on the identification accuracy and efficiency of single load under the individual appliance operated independently, which have limited support for the identification problem under multiple appliances operated simultaneously. Therefore, a simultaneous identification method is proposed to efficiently identify the total load under multiple appliances operated simultaneously in this paper. The proposed identification method mainly consists of three parts: hybrid features extraction, simultaneous identification optimization model construction, and frequency-weighting-factor-based genetic algorithm (FWF-GA). Firstly, the hybrid feature model, which integrates the features of active power, reactive power, and harmonic magnitude, is constructed by hybrid features extraction. Secondly, the simultaneous identification optimization model is constructed by employing the features of active and reactive power. Thirdly, the developed FWF-GA is used to solve the simultaneous identification optimization problem. In FWF-GA, the relative errors of active power, reactive power, and the frequency-weighting factor of harmonic magnitude are used to evaluate the fitness of an individual. Finally, a NILM practice to identify household appliances is used to demonstrate the validity of the proposed method.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3