Evaluation of Contemporary Computational Techniques to Optimize Adsorption Process for Simultaneous Removal of COD and TOC in Wastewater

Author:

Alhothali Areej1ORCID,Khurshid Hifsa2ORCID,Mustafa Muhammad Raza Ul23ORCID,Moria Kawthar Mostafa1,Rashid Umer4ORCID,Bamasag Omaimah Omar5ORCID

Affiliation:

1. Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

3. Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia

4. Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

5. Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

This study was aimed at evaluating the artificial neural network (ANN), genetic algorithm (GA), adaptive neurofuzzy interference (ANFIS), and the response surface methodology (RSM) approaches for modeling and optimizing the simultaneous adsorptive removal of chemical oxygen demand (COD) and total organic carbon (TOC) in produced water (PW) using tea waste biochar (TWBC). Comparative analysis of RSM, ANN, and ANFIS models showed mean square error (MSE) as 5.29809, 1.49937, and 0.24164 for adsorption of COD and MSE of 0.11726, 0.10241, and 0.08747 for prediction of TOC adsorption, respectively. The study showed that ANFIS outperformed the ANN and RSM in terms of fast convergence, minimum MSE, and sum of square error for prediction of adsorption data. The adsorption parameters were optimized using ANFIS-surface plots, ANN-GA hybrid, RSM-GA hybrid, and RSM optimization tool in design expert (DE) software. Maximum COD (88.9%) and TOC (98.8%) removal were predicted at pH of 7, a dosage of 300 mg/L, and contact time of 60 mins using ANFIS-surface plots. The optimization approaches showed the performance in the following order: ANFIS-surface plots>ANN-GA>RSM-GA>RSM.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3