Mechanisms of Intervertebral Disc Degeneration Treatment with Deer Antlers Based on Network Pharmacology and Molecular Docking

Author:

Weng Rui12,Lin Hongheng12,Li Zhuoyao3,Chen Daman3,Lin Xiaoxiao3,Zhang Zhenyu3,Chen Qiqi3,Yao Yiqi3,Li Wenchao12ORCID

Affiliation:

1. The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510375, Guangdong, China

2. Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou 510375, Guangdong, China

3. Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China

Abstract

Background. With the aging of the population, the prevalence of IVDD increases preoperatively. How to better treat IVDD has become an important clinical issue. Deer antlers proved to have a great effect on the treatment of IVDD in many studies, but the molecular mechanism has not been clarified. Objective. To investigate the molecular mechanism and target of deer antlers in the treatment of IVDD. Methods. Compounds from deer antlers were collected and targets were predicted using HERB, TCMSP, TCMID, SwissADME, and SwissTargetPrediction. Collection of disease targets for IVDD was done using GeneCards, TTD, DrugBank, DisGeNET, and OMIM. Cytoscape 3.7.2, AutoDock Vina (v1.1.2), and R software were used for data analysis and the construction of network diagrams. Results. A total of 5 active compounds from deer antlers were screened and 104 therapeutic targets were predicted. A total of 1023 IVDD disease targets were collected. Subsequently, PPI network prediction analysis was performed for disease and treatment targets, and 112 core targets were collected after screening. After obtaining the core target, we used the clusterProfiler software package of R software to carry out GO and KEGG enrichment analyses for the core target and plot the bubble maps. According to the GO enrichment results, the main biological processes of IVDD treatment by deer antlers lie in the rhythmic process, mRNA catabolic process, and G1/S transition of the mitotic cell cycle. KEGG results were mainly related to the PI3K-Akt signaling pathway, thyroid hormone signaling pathway, and Notch signaling pathway. Molecular docking results showed that estrone had the best docking results on ESR1. Conclusion. Deer antlers are rich in various compounds that can prevent the development of IVDD by upregulating the PI3K-Akt signaling pathway and Notch signaling pathway. Its key compounds estradiol and estrone can reduce the inflammatory response and oxidative stress in tissues and organs, thus slowing down the progression of IVDD. Estrone, the active compound in deer antlers, was found by molecular docking to have good results against ESR1, the target of the disease, which may be a potential site for drug therapy.

Funder

State Administration of Traditional Chinese Medicine of the People’s Republic of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3