A Dominant-Negative PPARγMutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

Author:

Liu Joey Z.1,Lyon Christopher J.1,Hsueh Willa A.1,Law Ronald E.2

Affiliation:

1. The Methodist Hospital Research Institute, Houston, TX 77030, USA

2. Takeda America Holdings, Deerfield, IL 60015, USA

Abstract

PPARγligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARγmutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARγpromoted G1S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγexpression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT) or constitutively-active (CA) PPARγinhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγexpression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγeffects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγexpression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγpromotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs).

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Drug Discovery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Histone Deacetylase 3: A Potential Therapeutic Target for Atherosclerosis;Aging and disease;2022

2. A Novel Multi-Centroid Template Matching Algorithm and Its Application to Cough Detection;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

3. Osthole Alleviates Neointimal Hyperplasia in Balloon-Induced Arterial Wall Injury by Suppressing Vascular Smooth Muscle Cell Proliferation and Downregulating Cyclin D1/CDK4 and Cyclin E1/CDK2 Expression;Frontiers in Physiology;2021-01-26

4. Energy Efficient Communication among Wearable Devices using Optimized Motion Detection;2019 IEEE Symposium on Computers and Communications (ISCC);2019-06

5. Identification from ceiling;Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia;2016-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3