Affiliation:
1. National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Abstract
We developed a high-sensitivity magnetoimpedance magnetic field sensor using a FeCoSiB amorphous wire and a coil wound around it. The amorphous wire had the diameter of 0.1 mm and the length of 5 mm. The magnetic field resolution of about 20 pT/√Hz was achieved. But the dynamic range of the magnetoimpedance magnetic field sensor was only about ±0.7 Gauss, which was not enough for some applications, such as the defect evaluation of steel plate. The linearity of the system was also not good when big magnetic field was applied, which will cause some noise when the system is used in unshielded environment. We developed a feedback method to improve the dynamic range and the linearity of the magnetic field sensor. The operation point of the magnetic field sensor was fixed by sending a feedback current to the coil. Using the feedback method, the dynamic range was improved from ±0.7 Gauss to ±10 Gauss and the linearity was also improved over 100 times better. An eddy current testing system using the magnetic sensor was developed, and the crack defects in steel plate and in 3D-printed titanium alloy plate were evaluated.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献