Safed Musli (Chlorophytum borivilianum L.) Callus-Mediated Biosynthesis of Silver Nanoparticles and Evaluation of their Antimicrobial Activity and Cytotoxicity against Human Colon Cancer Cells

Author:

Huang Fengchang1,Long Yaxin2,Liang Qingqing3,Purushotham Boregowda4,Swamy Mallappa Kumara45ORCID,Duan Yongqing6ORCID

Affiliation:

1. Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China

2. Department of General Surgery, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China

3. Innoscience Research Sdn Bhd, Jalan USJ 25/1, 47650 Subang Jaya, Selangor, Malaysia

4. East West First Grade College, Department of Biotechnology, Bengaluru 560091, India

5. Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

6. Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China

Abstract

With the advancement of nanobiotechnology, eco-friendly approaches of plant-mediated silver nanomaterial (AgNP) biosynthesis have become more attractive for biomedical applications. The present study is a report of biosynthesizing AgNPs using Chlorophytum borivilianum L. (Safed musli) callus extract as a novel source of reducing agent. AgNO3 solution challenged with the methanolic callus extract displayed a change in color from yellow to brown owing to the bioreduction reaction. Further, AgNPs were characterized by using UV–visible spectrophotometry, X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV–vis spectrum revealed the surface plasmon resonance property of AgNPs at around 450 nm. XRD pattern with typical peaks indicated the face-centered cubic nature of silver. AFM analysis confirmed the existence of spherical-shaped and well-dispersed AgNPs having an average size of 52.0 nm. Further, FTIR analysis confirmed the involvement of different phytoconstituents of the callus extract role in the process of bioreduction to form nanoparticles. The AgNPs were more efficient in inhibiting the tested pathogenic microbes, namely, Pseudomonas aeruginosa, Bacillus subtilis, Methicillin-resistant Escherichia coli, Staphylococcus aureus, and Candida albicans compared to callus extract. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxic property of AgNPs against human colon adenocarcinoma cell line (HT-29) in a dose-dependent manner. At higher concentrations of 500 μg/mL AgNPs, the cell viability was observed to be only 7% after 24 hours with IC50 value of 254 μg/mL. Therefore, these AgNPs clearly endorse the manifold potential to be used in various biomedical applications in the near future.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3