Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases

Author:

Li Xue1ORCID,Ji Wenjun2ORCID,Chang Hufei1ORCID,Yang Chunyan1ORCID,Rong Zhao1ORCID,Hao Jun1ORCID

Affiliation:

1. Department of Neurology, Yulin City No. 2 Hospital, Yulin, 719000, Shaanxi, China

2. Department of Neurosurgery, Yulin City No. 2 Hospital, Yulin, 719000, Shaanxi, China

Abstract

To explore the impact of magnetic resonance imaging (MRI) image features based on deep learning algorithms on the neurological rehabilitation of patients with cerebrovascular diseases, eighty patients with acute cerebrovascular disease were selected as the research objects. According to whether the patients were with vascular cognitive impairment (VCI), they were divided into VCI group (34 cases) and non-VCI group (46 cases). In addition, based on the convolutional neural network (CNN), a new multimodal CNN image segmentation algorithm was proposed. The algorithm was applied to the segmentation of MRI images of patients with vascular cognitive impairment (VCI) and compared with the segmentation results of CNN and fully CNN (FCN). As a result, the segmentation results of the three different algorithms showed that the Dice coefficient, accuracy, and recall of the multimodal CNN algorithm were 0.78 ± 0.24, 0.81 ± 0.28, and 0.88 ± 0.32, respectively, which were significantly increased compared to those of other two algorithms ( P  < 0.05). The neurological evaluation results showed that the MMSE and MoCA scores of VCI patients were 15.4 and 14.6 ± 5.31, respectively, which were significantly lower than those of the non-VCI group ( P  < 0.05). The TMT-a and TMT-b scores of VCI patients were 221.7 and 385.9, respectively, which were significantly higher than those of the non-VCI group ( P  < 0.05). The FA and MD values of nerve function-related fibers shown in the MRI images of the VCI group were significantly different from those of the non-VCI group ( P  < 0.05). Therefore, the neurological recovery process of VCI patients was affected by multiple neurocognitive-related fiber structures. To sum up, the multimodal CNN algorithm can sensitively and accurately reflect the degree of neurological impairment in patients with cerebrovascular disease and can be applied to disease diagnosis and neurological evaluation of VCI patients.

Funder

Shaanxi Basic Research Program of Natural Science

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3