Prediction of the Prognosis of Clear Cell Renal Cell Carcinoma by Cuproptosis-Related lncRNA Signals Based on Machine Learning and Construction of ceRNA Network

Author:

Xiao Zhiliang1ORCID,Zhang Menglei2,Shi Zhenduo3,Zang Guanghui3,Liang Qing3,Hao Lin3,Dong Yang3,Pang Kun3,Wang Yabin1,Han Conghui13ORCID

Affiliation:

1. School of Medicine, Jiangsu University, Zhenjiang, China

2. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China

3. Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China

Abstract

Background. Clear cell renal cell carcinoma’s (ccRCC) occurrence and development are strongly linked to the metabolic reprogramming of tumors, and thus far, neither its prognosis nor treatment has achieved satisfying clinical outcomes. Methods. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively, provided us with information on the RNA expression of ccRCC patients and their clinical data. Cuproptosis-related genes (CRGS) were discovered in recent massive research. With the help of log-rank testing and univariate Cox analysis, the prognostic significance of CRGS was examined. Different cuproptosis subtypes were identified using consensus clustering analysis, and GSVA was used to further investigate the likely signaling pathways between various subtypes. Univariate Cox, least absolute shrinkage and selection operator (Lasso), random forest (RF), and multivariate stepwise Cox regression analysis were used to build prognostic models. After that, the models were verified by means of the C index, Kaplan–Meier (K-M) survival curves, and time-dependent receiver operating characteristic (ROC) curves. The association between prognostic models and the tumor immune microenvironment as well as the relationship between prognostic models and immunotherapy were next examined using ssGSEA and TIDE analysis. Four online prediction websites-Mircode, MiRDB, MiRTarBase, and TargetScan-were used to build a lncRNA-miRNA-mRNA ceRNA network. Results. By consensus clustering, two subgroups of cuproptosis were identified that represented distinct prognostic and immunological microenvironments. Conclusion. A prognostic risk model with 13 CR-lncRNAs was developed. The immune microenvironment and responsiveness to immunotherapy are substantially connected with the model, which may reliably predict the prognosis of patients with ccRCC.

Funder

Medical Innovation Team Project of Jiangsu Province

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3