Using Abductive Machine Learning for Online Vibration Monitoring of Turbo Molecular Pumps

Author:

Abdel-Aal R.E.1,Raashid M.1

Affiliation:

1. Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Turbo molecular vacuum pumps constitute a critical component in many accelerator installations, where failures can be costly in terms of both money and lost beam time. Catastrophic failures can be averted if prior warning is given through a continuous online monitoring scheme. This paper describes the use of modern machine learning techniques for online monitoring of the pump condition through the measurement and analysis of pump vibrations. Abductive machine learning is used for modeling the pump status as ‘good’ or ‘bad’ using both radial and axial vibration signals measured close to the pump bearing. Compared to other statistical methods and neural network techniques, this approach offers faster and highly automated model synthesis, requiring little or no user intervention. Normalized 50-channel spectra derived from the low frequency region (0–10 kHz) of the pump vibration spectra provided data inputs for model development. Models derived by training on only 10 observations predict the correct value of the logical pump status output with 100% accuracy for an evaluation population as large as 500 cases. Radial vibration signals lead to simpler models and smaller errors in the computed value of the status output. Performance is comparable with literature data on a similar diagnosis scheme for compressor valves using neural networks.

Funder

Research Institute of King Fahd University of Petroleum and Minerals

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3