Computer Network Dynamic Balance Flow Distribution Based on Closed-Loop Particle Swarm Feedback Model

Author:

Zhou Wei1ORCID

Affiliation:

1. Information Engineering Department, Suzhou University, Suzhou 234000, China

Abstract

Based on the closed-loop particle swarm feedback model, this paper proposes a graphical method to analyze the stability of the computer network dynamic balance system. First, based on the second-order time delay system model of congestion control, the stability of the system is described by characteristic pseudopolynomials. Secondly, based on the inverse line, the stability of the system is verified by graphical analysis methods, and the PID controller parameter range that guarantees the stability of the system is obtained, and the relationship between the controller proportional gain boundary and the network characteristic parameters is analyzed. Then, based on the analysis of the basic particle swarm optimization algorithm, the particle swarm evolution formula is divided into two parts, its own factors and social factors, and the influence of each part on the evolution speed and position of the particle swarm is analyzed, and an improved particle swarm is proposed. Finally, according to the above analysis, we find the corresponding equation from the appropriate solution in turn, thereby designing a class of particle swarm optimization algorithm with fewer intermediate variables. In view of the system involved in the classical PID control parameter tuning method, the improved particle swarm algorithm is applied to the parameter tuning and optimization of the PID controller. During the experiment, the improved PSO-PID controller optimization algorithm was used in the random early detection algorithm of active queue management, the process of the improved algorithm was researched and designed, and the relevant performance of the improved algorithm was verified through simulation experiments.

Funder

Key Disciplines of Computer Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3