Photoreduction of Cr(VI) Ions in Aqueous Solutions by UV/ Photocatalytic Processes

Author:

Ma Chih Ming1ORCID,Shen Yung Shuen2,Lin Po Hsiang3

Affiliation:

1. Department of Cosmetic Application and Management, St. Mary’s Medicine Nursing and Management College, Yi-Lan 266, Taiwan

2. Holistic Education Center, Mackay Medical College, Taipei 252, Taiwan

3. Department of Environmental Engineering, Da-Yeh University, Changhwa 512, Taiwan

Abstract

This study discussed the photoreduction of Cr(VI) ions in aqueous solutions by UV/TiO2photocatalytic processes under various operational factors. Experimental results showed that the removal rate of Cr(VI) increased with decreasing solution pH values and with increasing dosages of organic compounds, indicating that the recombination rate of electrons and h+can be retarded in the reaction systems by the addition of the scavenger, thus raising the reaction rate of Cr(VI). The relationship of the chemical reaction rate of Cr(VI), TiO2dosage, and changes of Cr(VI) concentration was expressed by the pseudo-first-order kinetic equation. Comparing the experimental results of two different doping metals in modified TiO2photoreduction systems, the removal rate of Cr(VI) by the Ag/TiO2process is larger, possibly because the electron transferring ability of Ag is superior to that of Cu. However, the photoreduction rates of Cr(VI) by modified UV/TiO2processes are worse than those by a nonmodified commercial UV/TiO2process.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3