Rapid Driving Style Recognition in Car-Following Using Machine Learning and Vehicle Trajectory Data

Author:

Xue Qingwen1ORCID,Wang Ke1ORCID,Lu Jian John1ORCID,Liu Yujie1

Affiliation:

1. College of Transportation Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China

Abstract

Rear-end collision crash is one of the most common accidents on the road. Accurate driving style recognition considering rear-end collision risk is crucial to design useful driver assistance systems and vehicle control systems. The purpose of this study is to develop a driving style recognition method based on vehicle trajectory data extracted from the surveillance video. First, three rear-end collision surrogates, Inversed Time to Collision (ITTC), Time-Headway (THW), and Modified Margin to Collision (MMTC), are selected to evaluate the collision risk level of vehicle trajectory for each driver. The driving style of each driver in training data is labelled based on their collision risk level using K-mean algorithm. Then, the driving style recognition model’s inputs are extracted from vehicle trajectory features, including acceleration, relative speed, and relative distance, using Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), and statistical method to facilitate the driving style recognition. Finally, Supporting Vector Machine (SVM) is applied to recognize driving style based on the labelled data. The performance of Random Forest (RF), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) is also compared with SVM. The results show that SVM overperforms others with 91.7% accuracy with DWT feature extraction method.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3