Abnormal Behavior Detection Using Trajectory Analysis in Camera Sensor Networks

Author:

Wang Yong1,Wang Dianhong1,Chen Fenxiong1

Affiliation:

1. Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan 430074, China

Abstract

Camera sensor networks have developed as a new technology for the wide-area video surveillance. In view of the limited power and computational capability of the camera nodes, the paper presents an abnormal behavior detection approach which is convenient and available for camera sensor networks. Trajectory analysis and anomaly modeling are carried out by single-node processing, whereas anomaly detection is performed by multinode voting. The main contributions of the proposed method are summarized as follows. First, target trajectories are reconstructed and represented as symbol sequences. Second, the sequences are taken into account using Markov model for building the transition probability matrix which can be used to automatically analyze abnormal behavior. Third, the final decision of anomaly detection is made through the majority voting of local results of individual camera nodes. Experimental results show that the proposed method can effectively estimate typical abnormal behaviors in real scenes.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3