Self-Tuning Control Scheme Based on the Robustnessσ-Modification Approach

Author:

Touijer Nabiha1ORCID,Kamoun Samira1ORCID,Essounbouli Najib2ORCID,Hamzaoui Abdelaziz2

Affiliation:

1. Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering (Lab–STA), National School of Engineering of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia

2. CReSTIC, IUT de Troyes, 9 Rue de Québec, BP 396, 10026 Troyes Cedex, France

Abstract

This paper deals with the self-tuning control problem of linear systems described by autoregressive exogenous (ARX) mathematical models in the presence of unmodelled dynamics. An explicit scheme of control is described, which we use a recursive algorithm on the basis of the robustnessσ-modification approach to estimate the parameters of the system, to solve the problem of regulation tracking of the system. This approach was designed with the assumptions that the norm of the vector of the parameters is well-known. A new quadratic criterion is proposed to develop a modified recursive least squares (M-RLS) algorithm withσ-modification. The stability condition of the proposed estimation scheme is proved using the concepts of the small gain theorem. The effectiveness and reliability of the proposed M-RLS algorithm are shown by an illustrative simulation example. The effectiveness of the described explicit self-tuning control scheme is demonstrated by simulation results of the cruise control system for a vehicle.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency regulation strategies in renewable energy-dominated power systems: Issues, challenges, innovations, and future trends;Advanced Frequency Regulation Strategies in Renewable-Dominated Power Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3