Development and Validation of a Novel Clinical Prediction Model to Predict the Risk of Lung Metastasis from Ewing Sarcoma for Medical Human-Computer Interface

Author:

Li Wenle12ORCID,Hong Tao3,Xu Chan2,Wang Bing2,Hu Zhaohui4,Liu Qiang1,Wang Haosheng5,Dong Shengtao6,Kang Wei78ORCID,Yin Chengliang8ORCID

Affiliation:

1. Department of Orthopedics, Xianyang Central Hospital, Xianyang, China

2. Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China

3. Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China

4. Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China

5. Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China

6. Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China

7. Department of Mathematics, Physics and Interdisciplinary Studies, Guangzhou Laboratory (Bioland Laborarory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, Guangdong, China

8. Faculty of Medicine, Macau University of Science and Technology, Macau, China

Abstract

Background. This study aimed at establishing and validating a quantitative and visual prognosis model of Ewing Sarcoma (E.S.) via a nomogram. This model was developed to predict the risk of lung metastasis (L.M.) in patients with E.S. to provide a practical tool and help in clinical diagnosis and treatment. Methods. Data of all patients diagnosed with Ewing sarcoma between 2010 and 2016 were retrospectively retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. A training dataset from the enrolled cohorts was built (n = 929). Predictive factors for L.M. were identified based on the results of multivariable logistic regression analyses. A nomogram model and a web calculator were constructed based on those key predictors. A multicenter dataset from four medical institutions was established for model validation (n = 51). The predictive ability of the nomogram model was evaluated by the receiver operating characteristic (ROC) curve and calibration plot. Decision curve analysis (DCA) was applied to explain the accuracy of the nomogram model in clinical practice. Results. Five independent factors, including survival time, surgery, tumor (T) stage, node (N) stage, and bone metastasis, were identified to develop a nomogram model. Internal and external validation indicated significant predictive discrimination: the area under the ROC curve (AUC) value was 0.769 (95% CI: 0.740 to 0.795) in the training cohort and 0.841 (95% CI: 0.712 to 0.929) in the validation cohort, respectively. Calibration plots and DCA presented excellent performance of the nomogram model with great clinical utility. Conclusions. In this study, a nomogram model was constructed and validated to predict L.M. in patients with E.S. for medical human-computer interface—a web calculator (https://drliwenle.shinyapps.io/LMESapp/). This practical tool could help clinicians make better decisions to provide precision prognosis and treatment for patients with E.S.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3