Affiliation:
1. Department of Culture Education, Henan Institute of Economics and Trade, Zhengzhou, Henan 450000, China
Abstract
With the rapid development of multimedia and Internet technology, English news text summary technology has received widespread attention as a way to quickly obtain English news text content. The existing method of English news text summarization based on graph model usually takes English news text as the vertices of the graph, and the relationship between the two vertices is represented by the edge. Although it has achieved good results, it cannot quickly sort out the English Complex relationships between news texts. In order to solve this problem, this paper uses the hypergraph model to model the relationship between English news text, and conducts in-depth research on the application of the hypergraph model in the field of English news text summarization. The high popularity of the Internet has brought about earth-shaking changes to the news industry, which makes the news on the Internet a great way for netizens to get news. However, the public cannot pick out satisfactory events from a large amount of news. In order to solve this problem, news event discovery technology that can help users quickly discover and understand hot news is produced. In addition, user personalized recommendation technology will rely on customer operation habits to provide customers with hot events of interest. The personalized news recommendation method adopted in this article has the advantages of integrating discovery and personalized news recommendation, and provides users with a better experience. Compared with the traditional hierarchical clustering algorithm, the algorithm proposed in this paper significantly improves the accuracy.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献