Comparative Analysis of Time Series Prediction Algorithms on Multiple Network Function Data of NWDAF

Author:

Chen Dasheng1ORCID,Song Qi1,Zhang Yinbin1,Li Ling1,Yang Zhiming1

Affiliation:

1. Research Institute of China Telecom Corporation Limited, Guangzhou 510660, Guangdong, China

Abstract

With the emergence and vigorous development of 5G technology, there is a significant surge in network usage and traffic, resulting in heightened complexity within network and IT environments. This exponential increase in activity produces a plethora of events, making conventional systems inadequate for the efficient management of 5G networks. In comparison to 4G technology, 5G technology brings forth a host of new features, one of which is the network data analytics function (NWDAF). This function grants network operators the flexibility to either employ their own data analytics methodologies based on machine learning (ML) and deep learning (DL) into their networks. In this paper, we present a dataset named “NWDAF-NFPP” for network function performance time series prediction, collected from a laboratory at China Telecom. The dataset is carefully anonymized to ensure maximum realism and comprehensiveness, while safeguarding sensitive information. It encompasses eight categories of network functions, with data collected at five-minute intervals. The availability of this dataset provides valuable resources for researchers to conduct time series prediction research on network element performance. Following data collection, a total of six models were employed for network element performance prediction, encompassing both machine learning and deep learning approaches. This diverse set of models was carefully chosen to ensure comprehensive coverage of different techniques and algorithms. Through the comparison and analysis of these models, we aim to evaluate their predictive capabilities and identify the most effective approach for network element performance prediction. This comparative analysis will provide valuable insights into the strengths and limitations of each model, aiding in informed decision-making for network optimization and management strategies in the future.

Funder

Research Institute of China Telecom Corporation Limited

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3